The Limits of Positive Constraints^{*}

Aaron Kaplan University of Utah a.kaplan@utah.edu

LSA Annual Meeting Jan. 8, 2016

1 Introduction

- Harmonic Grammar (HG; Legendre et al. 1990, Smolensky & Legendre 2006) makes available positive constraints that reward good configurations instead of penalizing bad ones.
- Kimper (2011): positive harmony-driving constraints avoid Too-Many-Solutions (TMS; e.g. Blumenfeld 2006) problems that plague negative constraints.
- Johore dialect of Malay: rightward nasal harmony blocked by liquids and obstruents (e.g. Walker 2000):

(1)	pəŋãŵãsan	'supervision'
	mãkan	'to eat'
	minom	'to drink'
	baŋõn	'to rise'
	mãĨãp	'pardon'
	pənə̃ŋãĥãn	'central focus'
	mãj̃ãŋ	'stalk (palm)'
	mə̃nãwãn	'to capture' (active)
	mə̃ratappi	'to cause to cry'

(2) ALIGN([nasal],R,PWd,R): the right edge of a [nasal] domain must coincide with the right edge of some PWd.

- \bullet Imagine Malay': word-final clusters are broken up with epenethesis: /kast/ \rightarrow [kasət]
- If w(ALIGN) > w(*COMPLEX), epenthesis is blocked:

(3)

/nawakast/	Align 3	$* COMPLEX _{2}$	${\mathop{\rm Dep}}_1$	H
r a. nãwãkast	-4	-1		-14
b. nãwãkasət	-5		-1	-16

- Kimper's solution: SPREAD(\pm F): For a feature F, assign +1 for each segment linked to F as a dependent.
- This rewards each position that harmonizes, and unharmonized positions do not hamper candidates:

(4)	/na	awakast/	$\frac{\text{Spread}[+\text{NAS}]}{1}$	$* COMPLEX_2$	$\mathop{\mathrm{Dep}}_{1}$	H
	a.	nãŵãkast	+4	-1		2
	∎æb.	nãŵãkasət	+4		-1	3

- Kaplan (2015a,b): positional licensing (Crosswhite 2001, Walker 2004, 2005, 2011, Zoll 1997, 1998) has similar problems under HG; a positive reformulation again helps.
- \Rightarrow How many other constraint families would benefit from being recast in positive terms?
- Today: Positional Faithfulness (Beckman 1999)
 - Positional Faithfulness also introduces TMS pathologies (Jesney 2011).
 - Under the right conditions, positive Positional Faithfulness avoids those problems.
 - But those conditions are fragile, and positive constraints are not a general solution to TMS issues.

2 Two Pathologies in Positional Faithfulness

- Both pathologies modified from Jesney (2011), who shows that HS avoids them.
- Is HS the only solution, or do positive constraints provide an alternative?

2.1 Resyllabification to Facilitate Neutralization

• Final devoicing (German, Russian, Catalan, etc.): w(IDENT(voice)-onset) > w(*VOICEDOBSTRUENT)

^{*}Thanks to Abby Kaplan and audiences at the University of Utah for feedback on this work.

• Jesney (2011): if both outweigh ONSET, intervocalic voiced obstruents are syllabified as codas where they can be devoiced:

/Raid-e/ 'wheels' (Ger.)	IDENT(voi)-onset	*VOIOBS	Onset 1	Н
a. rei.dv		-1		-2
b. rei.te	-1			-3
r≊ c. reit.e			-1	-1

- (6) Positive IDENT(voice)-onset: Assign +1 to each onset consonant whose input correspondent has an identical value for [voice].
 - Resyllabification is no longer advantageous:

/raid-e/	$\operatorname{IDENT}_{3}(\operatorname{voi})\operatorname{-onset}_{3}$	*VOIOBS	Onset 1	Н
💵 a. reĭ.de	+1	-1		1
b. rei.te				0
c. reit.v			-1	-1

- Resyllabification doesn't remove a penalty anymore, and it forfeits a reward.
- $\bullet\,$ We'll come back to this. . .

(5)

(7)

()

2.2 Stress Shift to Facilitate Neutralization

• Nancowry: nasal Vs appear only in stressed syllables (Radhakrishnan 1981):

8)	?uŋ?ốk	'to eat'	*?ũŋ?ốk, *?ũŋ?ók
	?inkū́ : ?ə	'bench'	*?ĩnkū́:?ə, *?ĩnkú:?ə
	?umpếctak	'narrow'	*?ũmpéct̪ak, *?umpéct̪ãk
	kumpếchəŋə	'make it little'	*kũmpéchəŋə, *kumpéchəŋə
	hatắ?hətə	'herd of cattle'	*hãțú?həțə, *hațú?həțə
	?ấhca?	'arrow, nib, pen point'	*?ấhcã?, *?áhcã?
	?ấhə	'body'	*?ấhẽ, *?áhẽ

- $w(\text{IDENT}(\text{nas}) \acute{\sigma}) > w(*[+\text{NAS}])$
- Idealized Nancowry: stress is governed by TROCHEE

• Jesney (2011): If both constraints outweigh TROCHEE, iambs appear if they permit [+nas] vowels to be neutralized:

(9)	/bide/	$\operatorname{Ident}_{3}(\operatorname{nas})$ - $\acute{\sigma}$	$*[+_{2}^{NAS}]$	$\operatorname{TROCHEE}_{1}$	Н
	a. (bí.de)		-1		-2
	b. (bí́.de)	-1			-3
	r c. (bi.dé)			-1	-1

- This time, positive IDENT(nas)- $\dot{\sigma}$ doesn't help.
- (10) IDENT(nas)- $\dot{\sigma}$: assign +1 to each vowel in a stressed syllable whose input correspondent has an identical value for [nas].

/bide/	$\operatorname{Ident}_{3}(\operatorname{nas})$ - $\acute{\sigma}$	$*[+_{2}^{NAS}]$	$\operatorname{TROCHEE}_{1}$	H
a. (bí.de)	+1	-1		1
b. (bí́.de)				0
rs c. (bi.dé)	+1		-1	2

• By shifting stress, the second vowel can satisfy IDENT(nas)- $\dot{\sigma}$ while the first is changed to satisfy *[+NAS].

3 Why the Difference?

(11)

- (11): stress can shop around for a syllable with an oral vowel.
 - /e/ serves as an alternative locus for IDENT (nas)- $\dot{\sigma}$'s reward, allowing denasalization of $/\tilde{i}/.$
 - Stress shift doesn't forfeit a reward.
- (7): there's no alternative segment for IDENT(voi)-onset to reward.
- <u>Generalization</u>: Positive PF avoids TMS pathologies when there is no alternative element that can earn PF's reward.
- In fact, by manipulating the configurations, we can make positive PF work for the stress problem but not the syllabification problem.

• Stress: in monosyllables, there's no alternative for IDENT(nas)- $\dot{\sigma}$ to reward.

(12)	
L	14)	

(13)

/bĩː/	$\frac{\text{IDENT}(\text{nas})}{3}$ - $\dot{\sigma}$	$*[+_{2}^{NAS}]$	$\operatorname{Trochee}_{1}$	$\underset{1}{\text{Culminativity}}$	H
rs a. (bíi)	+1	-1			1
b. (bí:)					0
c. bir				-1	-1

• Syllabification: with another consonant, resyllabification need not sacrifice the reward from IDENT(voice)-onset:

/raikd-e/	$\operatorname{IDENT}_{3}(\operatorname{voi})\operatorname{-onset}_{3}$	*VOIOBS	ONSET 1	$\underset{1}{\text{Linearity}}$	Η
a. rezk.de	+1	-1			1
b. re:k.te					0
rs c. rext.kv	+1			-1	2

- Intervocalic CC surfaces faithfully except [-voi][+voi] sequences, which metathesize.
- <u>Summary</u>: under the right conditions, positive PF avoids TMS problems. But we can't always guarantee those conditions will hold.
 - PF for roots and initial syllables may be OK: can't substitute anything for the root; only one syllable can be initial.
 - PF for stress and onsets is not safe, as we've seen.

4 Possible Solutions: Faithfulness & Feature Theory

- The pathologies persist because the PF constraints reward maintenance of an unmarked feature value exactly as much as it reward maintenance of the marked value.
- Asymmetrical Faithfulness: reward preservation of [+voi] and [+nas] specifically (Hall 2006, Inkelas 2000, Rubach 2003):
- (14) a. IDENT(+voice)-onset: Assign +1 to each [+voice] onset consonant whose input correspondent has an identical value for [voice].
 - b. IDENT(+nas)- $\dot{\sigma}$: Assign +1 to each [+nas] segment in a stressed syllable whose input correspondent has an identical value for [nas].

(b)
(-		/

/ra:kd-v/	$\frac{\text{IDENT}(+\text{voi})\text{-onset}}{3}$	$*$ VOIOBS $_2$	Onset 1	$\underset{1}{\text{Linearity}}$	H
🕫 a. reik.de	+1	-1			1
b. reik.te					0
c. re:t.ke				-1	-1

(16)	/bide/	$\operatorname{Ident}_{3}(+\operatorname{nas})$ - $\acute{\sigma}$	$*[+_{2}^{NAS}]$	$\operatorname{TROCHEE}_{1}$	Н
	r a. (bí.de)	+1	-1		1
	b. (bí.de)				0
	c. (bi.dé)			-1	-1

• Introducing IDENT(-voice)-onset and IDENT(-nas)- $\dot{\sigma}$ would resurrect the pathologies:

(17)	/raːkd-e/	ID(+voi)-ons	$\operatorname{ID}(-\operatorname{voi}_3)$ -ons	*VOIOBS	LINEARITY 1	Н
	a. reik.dv	+1		-1		1
	b. reik.te					0
	r≊ c. re:t.ke		+1		-1	2

(18)	/bide/	$\operatorname{Ident}_{3}(+\operatorname{nas})$ - $\acute{\sigma}$	$\operatorname{Ident}_{3}(-\operatorname{nas})$ - $\acute{\sigma}$	$*[+_{2}^{NAS}]$	TROCHEE 1	Η
	a. (bí.de)	+1		-1		1
	b. (bí.de)					0
	r c. (bi.dé)		+1		-1	2

- Asymmetrical faithfulness works only if either:
 - A. IDENT(-voi) and IDENT(-nas) don't exist, or
 - B. The features [voi] and [nas] are privative (e.g. Lombardi 1994, Mester & Itô 1989, Steriade 1995)
- A: Faithfulness to unmarked features would be a TETU effect.
 - Probably OK in many cases, but we need IDENT(-voice)-onset to block intervocalic voicing, e.g.
- B: Privativity for all features is implausible (e.g. [ATR], [back])—the pathologies reemerge with these features.
- Alternative: let PF assign greater rewards for faithfulness to marked values than to unmarked values:
- (19) a. IDENT(voice)-onset: Assign +2 to each faithful [+voi] onset consonant and +1 to each faithful [-voi] onset.

• Not a solution:

(20)

/raːkd-e/	*VOIOBS	$\operatorname{Ident}_2^{(\operatorname{voi})}$ -ons	Onset 1	$\underset{1}{\text{Linearity}}$	H
a. rezk.dv	-1	+2			0
b. reik.te					0
r∞ c. re:t.ke		+1		-1	1

5 Conclusion

- Positive PF avoids TMS problems only if there is no unmarked alternative element that can be rewarded.
- Ensuring this requires not-quite-sound revisions to Faithfulness or feature theory.
- What does this mean for positive constraints versus Harmonic Serialism with respect to TMS problems (setting aside other TMS approaches like Blumenfeld (2006))?
 - Some cases submit only to positive constraints: harmony (Kimper 2011), Positional Markedness (Kaplan 2015a,b)
 - Some cases submit only to HS: Positional Faithfulness (Jesney 2011)
 - Some cases mentioned by McCarthy (2011) and Kimper (2011) are amenable to both approaches.
- This implies a richer typology of TMS problems.
- Despite overlapping empirical domains and similar motivations, Positional Markedness and Positional Faithfulness are actually quite different.

References

Beckman, Jill N. (1999) Positional Faithfulness. New York: Garland.

Blumenfeld, Lev (2006) Constraints on Phonological Interactions. Ph.D. thesis, Stanford University.

Crosswhite, Katherine (2001) Vowel Reduction in Optimality Theory. New York: Routledge.

- Hall, T.A. (2006) Derived Environment Blocking Effects in Optimality Theory. *NLLT* 24(3): 803–856.
- Inkelas, Sharon (2000) Phonotactic Blocking through Structural Immunity. In *Lexicon in Focus*, Barbara Stiebels & Dieter Wunderlich, eds., 740, Berlin: Akademie Verlag.
- Jesney, Karen (2011) Positional Faithfulness, Non-Locality, and the Harmonic Serialism Solution. In *Proceedings of the 39th Meeting of the North East Linguistic Society (NELS* 39), Suzi Lima, Kevin Mullin, & Brian Smith, eds., 429–440, Amherst, MA: GLSA.

- Kaplan, Aaron (2015a) Long-Distance Licensing in Harmonic Grammar. paper presented at 37. Jahrestagung der Deutschen Gesellschaft für Sprachwissenschaft (37th Annual Meeting of the German Society for Linguistics), Leipzig, Germany, March 4.
- Kaplan, Aaron (2015b) Long-Distance Licensing in Harmonic Grammar. paper presented at the 2015 American Meeting on Phonology, Vancouver, BC, Octber 10.
- Kimper, Wendell A. (2011) Competing Triggers: Transparency and Opacity in Vowel Harmony. Ph.D. thesis, University of Massachusets, Amherst, Amherst, MA.
- Legendre, Géraldine, Yoshiro Miyata, & Paul Smolensky (1990) Harmonic Grammar A Formal Multi-Level Connectionist Theory of Linguistic Well-Formedness: An Application. In Proceedings of the Twelfth Annual Conference of the Cognitive Science Society, 884–891, Cambridge, MA: Lawrence Erlbaum.
- Lombardi, Linda (1994) Laryngeal Features and Laryngeal Neutralization. New York: Garland.
- McCarthy, John J. (2011) Autosegmental Spreading in Optimality Theory. In *Tones and Features*, John Goldsmith, Elizabeth Hume, & Leo Wetzels, eds., 195–222, Berlin: Mouton de Gruyter.
- Mester, R. Armin & Junko Itô (1989) Feature Predictability and Underspecification: Palatal Prosody in Japanese Mimetics **65**(2): 258–293.
- Radhakrishnan, R. (1981) The Nancowry Word. Carbondale, USA: Linguistic Research.
- Rubach, Jerzy (2003) Polish Palatalization in Derivational Optimality Theory. Lingua 113: 197237.
- Smolensky, Paul & Géraldine Legendre (2006) *The Harmonic Mind.* Cambridge, MA: The MIT Press.
- Steriade, Donca (1995) Underspecification and Markedness. In Handbook of Phonological Theory, John Goldsmith, ed., 114–174, Oxford: Blackwell.
- Walker, Rachel (2000) Nasalization, Neutral Segments, and Opacity Effects. New York: Garland.
- Walker, Rachel (2004) Vowel Feature Licensing at a Distance: Evidence from Northern Spanish Language Varieties. In WCCFL, Benjamin Schmeiser, Vineeta Chand, Ann Kelleher, & Angelo J. Rodriguez, eds., 787–800, Somervile, MA: Cascadilla.
- Walker, Rachel (2005) Weak Triggers in Vowel Harmony. NLLT 23: 917–989.
- Walker, Rachel (2011) Vowel Patterns in Language. New York: Cambridge University Press.
- Zoll, Cheryl (1997) Conflicting Directionality. *Phonology* 14: 263–286.
- Zoll, Cheryl (1998) Parsing below the Segment in a Constraint-Based Framework. Stanford, CA: CLSI Publications.